

Cloudy RTA

Cloudy Radiative Transfer for AIRS

Comparisons to CM2 (GFDL) and ECMWF

L. Larrabee Strow¹, Sergio DeSouza-Machado¹, H. H. Aumann², Yi Huang³, Breno Imbiriba¹, Scott Hannon¹, Howard Motteler¹

Physics Department and Joint Center for Earth Systems Technology University of Maryland Baltimore County (UMBC)

NASA CalTech let Propulsion Laboratory²

Princeton University³

March 27, 2007

Overview of Talk

Cloudy RTA

Overview

PTA Codes

Closure with La

ECMWF Comparisons Summary of scattering radiative transfer code (RTA) developments

- Cirrus retrievals (just a little)
- Omparison of fast scattering RTA calculations using ECMWF cloud fields to observations (first use of ACDS)
- Fast scattering RTA calculation using GFDL CM2 model and comparison to observations and ECMWF

Motivation

Cloudy RTA
L. Strow

Overview

Closure with La

ECMWF Comparisons

- AIRS has signficant cirrus information, like to retrieve it in V6.
 Combine with Calipso for improved retrievals?
- This cirrus information might be important for improving the AIRS OLR product. (Important topic with NPOESS, CERES issues).
- Test closure of L2 clouds products with RTA that can include clouds
- Same scattering RTA being used extensively for AIRS dust retrievals (see talk by Breno Imbiriba of our group using Calipso)
- Validation of scattering RTA quite difficult, depends on science goals
- Climate Studies
 - Retrievals very complicated.
 - Climate via radiance monitoring; use sample scattering RTA calculations to understand. (Goody and Haskins.)
 - Compare climate model (and weather model/mesosale model) output to AIRS observations via scattering RTA.

Scattering RTA Overview

Cloudy RTA

RTA Codes

Closure with L2 Clouds

Comparisons Cirrus

- Speed very important, DISORT too slow
- Sergio DeSouza-Machado developed kTwoStream at UMBC to give us expertise. Also implemented RTSPEC (Frank Evans, Univ. Colorado, but no downwelling solar.)
- Weather and climate models have "continuous" clouds. Need "100-layer" scattering RTA?
- Maybe kTwoStream too hard to adapt to 100 layers? So, tried very simple and fast code (PCLSAM).
- But so far found 2-layer scattering code may be good enough if translate "continous" cloud parameters to 2-layer (ice/water, or water/dust) scattering profile.
- Probably always use 2-layer code for retrievals.
- And "100-layer" code for model comparisons?
- Accuracy requirements hard to assess
- SARTA has kTwoStream (2-layers) and PCLSAM (100-layers) now.
- kCARTA has kTwoStream (2-layers), PCLSAM (100-layers), RTSPEC (2-layers), and DISTORT

Changes since Sept. 2006

Cloudy RTA

RTA Codes

Closure with I

Clouds

- Now have multi-layer PCLSAM scattering in SARTA and kCARTA
- More than one cloud type (Combine scattering parameters using weighted average as per Z.Sun and K. Shine, QJRMS, 1994)
- Can mix "black" clouds (AIRS retrievals) with other multi-layer clouds
- Code to input ECMWF and CM2 (Princeton GFDL) ice and water cloud fields
- Ice: Use Anthony Baran's ice aggregate scattering parameters (Deff = 40um, can be fit in retrievals).
- Water: use Mie scattering codes (Deff = 20 um)

PCLSAM algorithm

Cloudy RTA

RTA Codes

 SARTA started out with "kTwoStream" using 2 scattering slabs:

- Now implemented PCLSAM: "Parameterization for Cloud Longwave Scattering for Use in Atmospheric Models" Ming-Dah Chou, Kyu-Tae Lee, Si-Chee Tsay, and Qiang Fu (J. Climate, v12, pgs 159-169 (1999))
- Parameterizes scattering effects by re-scaling optical depth
- Result is a very fast scattering code that mimics the clear sky algorithm in structure
- Simplicity lends itself to use in longwave scattering retrievals
- Absolute errors on the order of 10%. A problem?

Two Slab Model Comparisons

Cloudy RTA

L. Stro

RTA Codes

Closure with L

ECMWF Comparisons

Companisor

- \bullet CM2 (Princeton GFDL) 1996-2000 model data, monthly averages \pm 30 deg. lat.
- Reduced cloud profiles to 1 water and 1 ice slab
- Cloud fractions = 1 to emphasize clouds (model avg \sim 0.2)
- \bullet RTSPEC is accurate to \sim 1K for "thicker" clouds via comparisons to DISORT

Two Slab Model Biases

Cloudy RTA

L. Stro

Overviev

RTA Codes

Clouds

Comparison

- Same as previous slide (CM2) showing only biases
- BUT now cloud fraction ~ 0.2
- PCLSAM 100 layer and two-slab models agree very well

Two Slab RTA Comparison: CM2 (1996-2000)

Cloudy RTA

L. Stro

Overviev

RTA Codes

Clouds

Comparison

- Left: 1231 cm⁻¹, Right: 2616 cm⁻¹
- PCLSAM (green); Two-stream (red); RTSPEC (cyan)
- 1:60 = 0-30S, 61:120 = 0:30N
- One slab (for water) and one slab (for ice)
- Ocloud fractions ≈ 0.2

Closure with AIRS Level 2 Clouds

Cloudy RTA

Closure with L2 Clouds

- How well can SARTA match L1b radiances using L2 cloud retrievals?
- SARTA can include two clouds at different altitudes, each with an associated cloud fraction
- Cloud emissivity set to unity
- Cloud fraction, altitude and atmospheric state from V5 L2 retrievals, Version 5.0.3 (so evidently bad ozone)
- Statistics are for a full day, 2005.10.07
- Only included FOVs with Qual.Cloud_OLR == 0 & $Qual.Temp_Profile_Bot = 0$
- Calcuations match at 800 cm⁻¹ and below, as expected, but not in windows

Bias: FOVs with 0.2 to 0.4 Cloud Fraction

Cloudy RTA

L. Stro

Overview

Closure with L2

Clouds

Bias: FOVs with 0.4 to 0.6 Cloud Fraction

Cloudy RTA

PTA Code

Closure with L2 Clouds

ECMWF Comparisons

RTA Calculations Using ECMWF Cloud Fields

Cloudy RTA

RTA Codes Closure with L

ECMWF Comparisons

- ECMWF analysis/forecast contains very complete cloud information
- Accuracy of these model fields appears to be of high interest
- Matched ECMWF to AIRS Climate Data Set (ACDS) random FOV selection for Sept. 2003 - August 2005.
- Computed all channel B(T)'s using SARTA/PCLSAM using ECMWF cloud information
- Analysis in progress, mostly comparing observed to computed PDF's of 1231 cm⁻¹ B(T)'s (histograms).

100-Layer RTA vs 2-slab RTA for 1 day

Cloudy RTA

L. Str

Overview

RTA Codes

Clouds

ECMWF Comparisons

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 Global Day Ocean

Cloudy RTA

L. July

Overview

Closure with

ECMWF

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 Global Night Ocean

Cloudy RTA

L. Stro

Overview

Closure with I

ECMWF

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 Global Day Ocean Log Scale

Cloudy RTA

ECMWF Comparisons

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 0-30 Deg. Day Ocean

Cloudy RTA

L. Str

Overview

Closure with

ECMWF

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 0-30 Deg. Night Ocean

Cloudy RTA

ECMWF

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 0-30 Deg. Night Land

Cloudy RTA

L. Str

Overview

Closure with

ECMWF

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 30-60 Deg. Day Ocean

Cloudy RTA

L. Str

Overview

Closure with I

ECMWF

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 30-60 Deg. Night Ocean

Cloudy RTA

PTA Code

Closure with L

ECMWF

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 30-60 Deg. Day Land

Cloudy RTA

L. Stro

Overview

Closure with

ECMWF

PDF's for 1231 cm⁻¹, Aug. 2003 - July 2004 30-60 Deg. Night Land

Cloudy RTA

ECMWF

PDF's for 1231 -822 cm⁻¹ 0-30 Deg. Night Ocean

Cloudy RTA

L. Stro

Overview

Closure with I

ECMWF

1231 cm^{-1} Bias vs B(T) of 1231 Channel 0 to 30 Deg. Lat, Day/Ocean, 12 Months ACDS

Cloudy RTA

Comparisons

ECMWF

Bias for Dec 2003, 0-30 Deg. Lat.

Cloudy RTA

L. Stro

Overview

RTA Code

Clouds

ECMWF Comparisons

Bias for July 2004, 0-30 Deg. Lat.

Cloudy RTA

PTA Code

Closure with

ECMWF

Bias for Dec. 2004, 0-30 Deg. Lat.

Cloudy RTA

ECMWF Comparisons

July 2004 Bias vs Latitude

Cloudy RTA

/enview/

RTA Code:

Clouds

ECMWF Comparisons

July 2005 bias vs Latitude

Cloudy RTA

ECMWF

CM2 and ECMWF 1231 cm⁻¹ Time Series Left: CM2, Right: Obs and ECMWF

Cloudy RTA

Overview

Closure with L

ECMWF Comparisons

Cirrus

Results for 0-30 Deg. Latitude

1-Day CIRRUS: 2005.10.07

Cloudy RTA

L. Str

Overview

RTA Code

Clouds

ECMWF

- Retrieval tests underway
- Fix water cloud with AIRS L2, fit for ice amount and effective size at potion of AIRS L2 upper cloud (eventually fix thickness with Calipso (nadir)?)
- Baran's ice hex scattering paramss (Deff = 12.9 to 143 um)
- Working on channels and weights, include lower particle sizes
- Figure is just btobs961 btobs822.

Bias results for 1-Day CIRRUS: 2005.10.07

Cloudy RTA

Overview

Closure with L

FCMWF

- Particle size limited to dme between 15 and 70 um;
- ECMWF means used ECMWF for fixed water cloud. Solid curve used AIRS L2 retrieval for fixed water cloud.

Preliminary: Cirrus Particle Size Retrievals

Cloudy RTA

RTA Code

Clouds

ECMWF

Conclusions

Cloudy RTA

L. Jul

PTA Code

Closure with L2

ECMWF Comparison

- Scattering RTA reproduces much of the behavior of the observed PDF's for BT 1231 cm⁻¹.
- More work need to validate scattering codes: comparisons with other, more accurate codes
- Cirrus cloud retrievals can remove closure biases
- V6: cirrus retrivals?